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Abstract. The behaviour of a polymer dissolved in a poor solvent is studied using the 
self-interacting self-avoiding walk model. The properties of short polymers are generated 
by exact enumeration methods and the results extrapolated to large systems. Evidence 
supporting the existence of a phase transition is obtained. The exponents governing the 
length dependence of the partition function and moments of the distribution functions 
appear to be temperature dependent. 

1. Introduction 

The self-avoiding walk on a lattice has long been regarded as a simple model for a 
polymer chain in dilute solution (Domb 1969). If attractive interactions between points 
on the walk which lie on neighbouring lattice sites are incorporated, then the model 
represents a polymer dissolved in a poor solvent with a tendency to collapse from a 
loosely coiled, random high-temperature state to a compact, ordered low-temperature 
state. A collapse of this kind may well be marked by a phase transition. 

A model of this nature has sufficient physical content to enable it, in principle, to 
provide answers to the following questions. Is there a phase transition and, if there is, 
what is its nature? How do the exponents governing various aspects of the behaviour 
depend on temperature, or are they temperature independent? What is the nature of 
the ordered state? Answers to such questions would have to be qualified by the fact that 
the polymer is embedded in a lattice, although the difference between the close-packed 
lattice and continuum cases may well be small. 

Aside from mean-field type polymer theories and cluster expansions (e.g. 
Yamakawa 1971), none of which have produced answers to the above questions, the 
problem can be studied using Monte Carlo and exact enumeration techniques. Monte 
Carlo (Mazur and McCrackin 1968, McCrackin et a1 1973) operates on chains ranging 
in length up to about 1000 units, but, under certain circumstances, in particular at low 
temperatures, its ability to adequately sample the chain configuration space is severely 
limited. Exact enumeration, on the other hand, predicts the behaviour exactly, but due 
to the exponential growth rate of the number of possible configurations, it is only 
capable of dealing with short chains-up to 10-20 units, depending on the underlying 
lattice. The two techniques complement one another and, despite the considerable 
difference in the size of system studied, the results generally agree remarkably well. 

In the absence of an analytic solution to the polymer problem Massih and Moore 
(1975) studied the related problem of embedding a chain in a lattice, allowing sites to be 
visited more than once but edges only once. Their solution was confined to a 
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generalization of the Bethe lattice, the triangular cactus tree, and displayed a phase 
transition. Subsequent calculations for the conventional self-avoiding walk polymer 
model for a class of generalized Bethe lattices are due to Morita (1976). In these 
calculations the chain is found to undergo a second-order phase transition at a finite 
temperature; at the transition point the specific heat experiences a jump discontinuity, 
and the mean end-to-end distance is continuous but its derivative not. 

The relevance of these results, applying as they do only to tree-like lattices, to the 
problem of a polymer on a regular lattice is not obvious. The connectivity and 
dimensionality of the underlying lattice play important roles in determining the nature 
of the phase transition, as evidenced by the Ising model which exhibits mean-field 
behaviour on tree-like lattices, and it is only when a regular lattice is employed that the 
physically interesting non-classical behaviour appears (Domb 1960). Furthermore, the 
behaviour of the polymer below the transition as predicted by these calculations 
appears unrealistic; the chain locks into its ground-state configuration at the transition 
point and shows no subsequent temperature dependence. Such artificial behaviour 
can be attributed to the restricted connectivity of tree-like lattices and need not be 
expected to occur on a regular lattice. 

Studies of the critical behaviour of lattice spin systems led to the proposal of the 
universality hypothesis for critical exponents (Kadanoff 1971, Griffiths 1971). If this 
hypothesis is extended to cover the polymer problem it predicts that the exponents 
governing length dependence of the polymer behaviour should, in the long-chain limit, 
be temperature independent, except possibly at the transition point where a sudden 
change of value may occur (Domb 1974). Nagle (1974), on the other hand, draws a 
distinction between the kinds of interaction present in spin systems and those of the 
polymer problem, and argues that the strong spatial correlations in the latter reduce the 
likelihood that universality is applicable. At the present time there is no firm evidence 
either way; even the numerical results presented in the body of this article fail to 
resolve the issue. 

An alternative approach to the problem is through the renormalization group. 
Burch and Moore (1976) have used this method, supplemented by additional approxi- 
mations, to predict a specific heat which diverges at the transition point. Though their 
work requires assuming the existence of a 0 point, a feature whose existence is doubtful 
(McCrackin er a1 1973, Rapaport 1974a), their conclusions support the exact enumera- 
tion results (P 4). 

In this paper we discuss the properties of lattice embedded polymers with attractive 
interactions. The exact enumeration data upon which the analysis is based, and the 
techniques employed, were described in an earlier paper (Rapaport 1976, to be 
referred to as I) which dealt with the corresponding problem for repulsive interactions. 
Both chain and ring polymers are described; in general the ring results are of poorer 
quality than those of the chains and, consequently, the emphasis is on the latter. The 
results described here all apply to the FCC lattice. 

2. Data generation 

The partition function of a polymer chain of n + 1 units, or a ring of n units, embedded 
in a regular lattice, can be written as 



Numerical studies of collapsing polymers 639 

where 8 = J/kBT, and -J is the strength of interaction between non-adjacent polymer 
units which approach to nearest-neighbour separation (I). For the attractive forces 
considered here J >  0. The coefficients cnm are the numbers of n-link chains or rings 
with m nearest-neighbour pairs. In the limit 8 = 0, (2.1) reduces to the number of 
n-step self-avoiding walks (chains) or the number of returns to the origin of an n-step 
walk (rings), the properties of which have been extensively studied (Domb 1969). 

The moments of the chain end-to-end distance distribution have the form (I) 

The moments of the distribution of distances between the polymer units and the centre 
of mass, SE(@), for both chains and rings, can be similarly expressed. 

The coefficients needed to generate the c,(e) polynomials and the p = 2 R and S 
moments as far as n = 9 (chains) and n = 12 (rings) for the FCC lattice were tabulated in 
I. They are obtained by straightforward exhaustive enumeration of the possible chain 
and ring configurations. 

The thermodynamic properties of the polymer are obtained from the mean number 
of nearest-neighbour pairs of units, per link, 

The internal energy per link is then -Jg,(8). The fluctuation in (m) is given by 

a2 
h , ( e ) = ( m 2 ) - ( m ) 2 = n - ' -  ae2 In C f l ( 6 )  

and the specific heat per link is just kBe*h,(O). The quantity h,(8) will subsequently 
be referred to as the specific heat. 

The thermodynamic and configurational properties at low temperatures are domi- 
nated by the high-order coefficients in (2.1) and (2.2). Inspection of the tabulated 
coefficients in I reveals that if only the highest-order coefficients (corresponding to the 
8 + a3 limit) are retained, the values of both c, and the moments vary irregularly with n, 
as opposed to the smooth behaviour at 0 = 0. This irregular behaviour is due to finite 
size effects; much larger n-values must be reached before geometrical constraints will 
allow a compact configuration to form. As will become apparent in the sequel, the 
presence of these irregular high-order terms is felt even at relatively small values of 8. 

3. Configurational properties 

Using the methods described in I we have analysed the n-dependence of the moments 
I?!(@) and SE(8) for a range of positive values of 8. As was the case in the earlier work, 
the most important quantity is the exponent y (0 )  characterizing the large-n behaviour: 

R :( e)  - ro(8)n y ( e )  8 2 0 ,  (3.1) 

with analogous forms for Si(e) and the higher-order moments. In the high- 
temperature limit (8 = 0) (3.1) reduces to the familiar self-avoiding walk result with 
y(0) = 6 /5  for both R:(O) and SE(0). At zero temperature (0 = a) the polymer exists in 
the collapsed state and one would expect that y ( a )  = 2/3; in other words, the mean 
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end-to-end distance and radius of gyration are proportional to the radius of the 
collapsed polymer. 

At  intermediate values of 8 there are two types of behaviour consistent with (3.1): 
one is that y ( 0 )  varies continuously with 8, the other that the exponent is constant in 
both the high- and low-temperature phases with an abrupt jump in value at the 
transition point. The former suggests a steady growth of ordered regions along the 
polymer as the temperature is lowered, the latter a sudden collapse into the ordered 
state at the transition point. A third possibility is that (3.1) is incorrect over part or all of 
the range (excluding 8 = 0), however no extrapolation methods exist for handling 
behaviour which cannot be described by (3.1) (e.g. an essential singularity). 

The exponent y ( 8 )  is obtained by fitting the R-moment data to the relation (I) 

(3.2) 

and similarly for the S moment. A precondition for obtaining reasonable estimates of 
y ( 8 )  is that the ratios Ri+,/R; rapidly converge to unity. For example, linear 
extrapolation of the 8 = 0 R-moment ratios against l / n  yields a limiting value which 
differs from unity by only 0.1%; for 8 = 0.18 the difference is approximately 1%. This 
deviation, small though it is, is capable of producing a relative error in y ( 6 )  an order of 
magnitude larger. 

Estimates for y ( 8 )  have been obtained by the Neville table method (an extension of 
equation (3.2) to higher order, see I); the results for the p = 2 chain moments appear in 
tables 1 and 2. For both R and S moments the exponent appears to decrease gradually 
as 0 increases, and at the same time the convergence of the Neville table becomes 

Table 1. Neville table estimates of the exponent y ( e )  obtained from the chain moment 
R;(O), for various 0. The corresponding Monte Carlo (MC) results are also shown. 

k 
0 1 2 3 MC 

n 

e = o  
6 
7 
8 

6 
7 
8 

6 
7 
8 

6 
7 
8 

6 
7 
8 

e = 0.05 

e = o . i o  

e=o.11  

9=0.12 

1.192 
1.212 1.206 1.194 1.189 
1.211 1,204 1.200 1.208 
1.210 1.203 1.198 1.196 

1.175 1,163 1,148 1.136 
1,173 1.162 1.157 1.170 
1,172 1.161 1.158 1.160 

1.133 1.109 1.085 1.060 
1.129 1.104 1.092 1.103 
1.125 1.102 1,094 1.097 

1.124 1,097 1.070 1,042 
1.119 1.091 1.076 1.085 
1.115 1.088 1.078 1.080 

1.114 1.084 1.054 1.022 
1.109 1.077 1.059 1.066 
1,104 1.073 1.060 1.062 

1,153 

1,098 

1.073 

1.023 
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Table 2. Estimatesof ?(e) obtained from the chain moment Si(@). The Monte Carlo (MC) 
results are also shown. 

0 1 2 3 MC 

e = o  
6 
7 
8 

6 
7 
8 

6 
7 
8 

6 
7 
8 

6 
7 
8 

e = 0.05 

e = 0.10 

e = o . i i  

e=0.12 

1.090 
1.106 
1.118 

1.060 
1.074 
1,084 

1.026 
1.037 
1.046 

1.019 
1.029 
1.037 

1.012 
1.021 
1,028 

1.192 
1.198 
1.203 

1.150 
1,156 
1,160 

1.101 
1.103 
1.104 

1.090 
1.091 
1.091 

1.079 
1.078 
1.078 

1.210 
1.216 
1.215 

1.164 
1.170 
1.171 

1.105 
1.107 
1.107 

1.092 
1.092 
1.092 

1.078 
1.077 
1.075 

1.186 
1.209 
1.223 
1.214 

1,156 
1,178 
1.172 

1.087 
1.110 
1.107 

1.072 
1,093 
1.091 

1*055 
1.075 
1.073 

1.154 

1.102 

1.075 

1.027 

poorer. Also given in the tables are the exponents obtained by Monte Carlo studies 
(McCrackin et aI 1973); there no extrapolation proved necessary, as the exponents 
were found by measuring the gradients of the straight line obtained after plotting each 
moment against n on a log-log scale. 

The exponent estimates provided by the different methods agree with one another 
as far as 0 = 0.11, but above this the Monte Carlo estimates change more rapidly than 
those of exact enumeration. For 8 > 0.125 the Monte Carlo results can no longer be 
fitted to a straight line and no exponent estimates are possible. Over the range of 8 for 
which exponents can be obtained the values of y ( 0 )  for both R and S moments appear 
almost equal and, as was the case for repulsive interactions (I), this suggests that 
irrespective of the correct asymptotic behaviour the limiting n -dependence of both 
kinds of moment are the same. Similar results, though of lower quality, are obtained for 
the ring S moments. 

The close agreement between the exact enumeration and Monte Carlo exponent 
results is a strong argument in favour of a 0-dependent exponent. The former method 
involves chains of up to n = 9, the latter up to n = 1000, a difference of two orders of 
magnitude! Although experience with lattice spin systems has shown that exponents 
normally obey universality, there is no convincing reason why polymers must do 
likewise. Furthermore, even one of the spin systems, the exactly soluble eight-vertex 
model (Baxter 197 l), does not obey universality, and dimensional arguments have been 
given (Kadanoff and Wegner 1971) to explain the breakdown. 

Nevertheless, if one has good reason to believe that universality should apply then a 
possible explanation for the spurious &dependence of the exponents is to be found in I. 
Briefly stated it is that (3.1) is only the leading-order term in an expansion involving 
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decreasing powers of n (and perhaps other more complicated n-dependent forms). As 
6 increases these corrections become increasingly important, and true asymptotic 
behaviour only appears at much larger values of n. Hence the quality of extrapolation 
based on a fixed n will decrease with increasing 6. In the case of the Monte Carlo results 
which also yield 6-dependent exponents, it may be possible to attribute the behaviour 
to the inability of the method to sample the entire configuration space of the polymer. 
Although the Monte Carlo method proved highly successful in the non-interacting 
self-avoiding walk problem, the presence of attractive forces may make it difficult for 
the Monte Carlo generator to access certain regions of configuration space and the final 
results will consequently be biased. Now that exact results are available for tree-like 
lattices it may well prove possible to test this observation. 

The exact calculations on the generalized Bethe lattices predict a constant exponent, 
y ( 6 )  = 2, for the end-to-end distance above the transition (Morita 1976). It is not 
obvious what bearing this has on the regular lattice under investigation since tree-like 
lattices are effectively infinite dimensional, in the sense that the number of neighbours 
of a given site grows exponentially with distance rather than as some power of the 
distance. 

The dependence of S:(6) on 6 for fixed n is shown in figure 1. The curves are similar 
in form to those for much longer chains obtained by Monte Carlo methods (McCrackin 
et a1 1973, results given only for simple cubic lattice) and suggest that the infinite chain 
has either an inflection point or a jump discontinuity at some value of 6. The density 
distribution of the polymer is closely related to the S moments; an inflection point 
would indicate a continuous density variation as seen in second-order phase transitions, 
whereas a jump discontinuity suggests a transition of first order. Similar behaviour is 
observed to occur in the R moments. 

I I I I I 
0.8 1 .6  

e 
Figure 1. Plot of the chain mean-square radius of gyration Si(@), divided by the random- 
walk value 4 6 ,  against n. Note the crossover just below B = 0.2; in the B + CO limit a jump 
or inflection point may develop in this region. 
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The low-temperature nature of y(8)  cannot be deduced from available exact 
enumeration or Monte Carlo data; in the former case this is due to the finite size 
irregularities mentioned in 0 2, in the latter the problem is one of inadequate sampling. 

4. Thermodynamic properties 

In the limiting case 8 = 0 the partition function reduces to the number of self-avoiding 
walks, or returns to the origin, whose asymptotic behaviour is (Domb 1969) 

c, -cOpnna.  

For non-zero 8 this generalizes to 

c,(e) - co(e)p(e)nn”(e).  (4.1) 
The analysis for 8<0 (I) yielded results consistent with (4.1); p ( 8 )  decreased as 181 
increased reflecting an increased ‘effective’ excluded volume, and the exponent a (8) 
remained almost constant. 

The results of a similar analysis for 8 > 0 appear in figure 2 and table 3. The chain 
and ring p ( 8 )  estimates obtained by linear extrapolation are seen to lie fairly close 

.. 
10 

\ 
U‘ 

/ >‘ , , I  

111  116 118 1/12 0 
l l n  

Figure 2. Estimation of @(e) from the partition function. In each case the broken line is the 
linear extrapolation based on the final pair of points. 

Table 3. Chain and ring estimates of @(e) and a ( @ )  obtained using linear extrapolation. 

e @ch(e)  @,,(e) a,,(@) a r m  

0 10.03 10.05 0.170 -1.78 
0.03 10.27 10.27 0.149 -1.71 
0.06 10.53 10.54 0.121 - 1.66 
0.12 11.16 11.24 0.039 -1.61 
0.18 11.97 12.21 -0.089 -1.65 
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together; if the residual curvature of the plots is taken into account by performing a 
Neville table analysis the agreement is slightly improved. This suggests the assertion 
that over the range of 8 studied the chain and ring p ( 8 )  values are identical. The 
statement was previously proposed for 8 < 0 (I), and is known to be exact for 8 = 0. The 
exponent a(8) appears to vary with 8 (table 3), but in view of the discussion in § 3 a 
constant exponent still remains a possibility. 

When plotted as a function of 8, the mean number of nearest-neighbour pairs, g,(8), 
shows a rapid increase in value as 6 decreases towards zero (the slope of the curves is 
given by h,(8)-see below). Complete collapse, in the sense that most polymer units 
are surrounded by the maximum number of nearest neighbours, is not possible for small 
n, and the growth of gn(8) must be gradual. However, in the limit n +CO the behaviour 
of g,(8) may well be similar to that proposed for the moments (§ 3), namely an inflection 
point or discontinuity at the transition point. 

The form of the specific heat h, (8) is a more revealing indicator of the behaviour as 
n +CO. The function is plotted in figure 3 for various chain lengths. The maximum 

''1 "A i 

1 I 1 I I I I 
e 

0 0 8  1 6  

Figure 3. Chain specific heat /I,(@) against 8. 

values attained by ha(@) are seen to increase with n ;  when the maxima are plotted 
against In n they are seen to diverge more rapidly than In n (Rapaport 1974b). In the 
case of the two-dimensional Ising model a similar trend in the specific heat leads to a 
divergence in the infinite limit (Ferdinand and Fisher 1969). Results taken from Monte 
Carlo studies (Mazur and McCrackin 1968) show that the trend established by the short 
chains persists to much higher values of n, and one is led to conclude that the specific 
heat of the infinite chain diverges at the transition point. Qualified confirmation of this 
statement is obtained from approximate renormalization group calculations (Burch and 
Moore 1976). 
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An alternative approach to the polymer phase transition problem is through a study 
of the distribution of the zeros of the partition function in the complex temperature 
plane. Let 7 = exp 8; the partition function polynomial (2.1) is then 

where (7;) is the set of complex zeros of c , ( ~ ) .  Since all the coefficients cnm are positive 
none of the zeros can lie on the positive real axis and the thermodynamic properties of 
finite chains are analytic functions of temperature. However, as n +CO a subset of the 
zeros may well form a continuous curve which intersects the real axis, and this would 
lead to singularities in the free energy derivatives. The detailed nature of these 
singularities is determined by the density of zeros in the neighbourhood of the 
intersection point (Abe 1967). 

The zeros of c , ( v )  are shown in figure 4. Only the first quadrant is displayed since 
the distribution of zeros is symmetric about the real axis, and the zeros with negative 

2 

1 

- 
c - 
E 

- 1  

7 

I I I 

0 0 5  1 0  1 5  
Re ( q )  

Figure 4. Chain partition function zeros. The pattern is symmetric about the real axis, and 
zeros with negative real parts are omitted. The zero closest to the real axis for each value of 
n is underlined. 

real parts are not relevant. The closest zeros to the real axis for each value of n are seen 
to lie on a fairly smooth trajectory. Finsy eta1 (1975) have made an analogous study for 
the simple cubic lattice using both exact and Monte Carlo methods. The Monte Carlo 
results strongly suggest that the zeros lie on a continuous curve and it proved possible to 
estimate where the curve crossed the real axis. The exact enumeration results, 
however, cannot be fitted to a smooth curve with any reasonable degree of confidence; 
instead we will compare the results with the specific heat analysis presented earlier. 
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In table 4 the values tIR = In qR, where qR is the distance from the origin of the zero 
closest to the real axis, are listed together with tIM, the locations of the corresponding 
specific heat maxima. The difference between the two sets of values is small, for n = 9 
they differ by less than 2%. This suggests that the apparent divergence of the specific 
heat is closely related to the gradual approach of the zeros to the real axis. 

Table 4. Comparison of the logarithm of the distance from the origin of the closest partition 
function zero to the real axis (e& with the @-value at which the specific heat maximum 
occurs (eM), for chains. 

0.373 0.405 
0.363 0.379 
0.357 0.356 
0.347 0.342 

A rough extrapolation of the 8 M  values yields a limiting value of 0.2. If 8 M  and eR 
eventually coincide then one would expect the intersection of the curve of zeros with the 
real axis to occur somewhere between 77 = 1 - 2  and 1.3. From figure 4 this appears to be 
a likely possibility. 

The corresponding results for the rings are less clear. The partition function zeros 
appear to lie along two trajectories, and the ring specific heats indicate a limiting 1 9 ~  
value very close to zero. These results may well be due to finite size effects which, for 
given n, are more pronounced for rings than for chains. 

5. Review 

Exact enumeration methods have been used in an attempt to study the properties of the 
self-interacting polymer model. The exponents governing the length dependence of the 
partition function and moments do not appear to be temperature independent. The 
moment exponent estimates, y(8) ,  agree with those obtained in the Monte Carlo study; 
in both cases the deviation of y ( 8 )  from the 8 = 0 value of 6/5 is not confined to the 
transition region ( I 9  = 0.2) but is noticeable as soon as 8 departs from zero. Thus, unlike 
the polymer with repulsive interactions where a case could be made favouring 
constant exponents (I), the attractively interacting system does not appear to obey 
universality. Of course the possibility that both methods are unable to handle the 
problem remains, but the close agreement between the results render this unlikely. 

The results indicate that a phase transition characterized by a divergent specific heat 
occurs when the chain switches between its collapsed and expanded states. The 
existence of this transition gains further support from the exact solution on the 
generalized Bethe lattices and the renormalization group calculations. 

In regard to the low-temperature behaviour, neither exact nor Monte Carlo 
methods have succeeded in throwing light on the problem, The Bethe-type lattice 
calculations reveal a chain which remains locked in a fixed configuration on the 
low-temperature side of the transition. For a regular lattice however, analogy with the 
picture of clusters of ordered and disordered spins in the Ising model (Fisher 1967) 
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suggests a scheme whereby the polymer collapse is only partial at non-zero tempera- 
tures; the polymer contains both ordered and disordered sections (Lifshitz 1969), and 
the ordered sections gradually increase in size and coalesce as temperature is reduced. 
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